Relatorio Laboratorio 7 - Processamento de Video

1. Introducao

Este relatério documenta os procedimentos e resultados do Laboratorio 7 da disciplina
de Processamento de Video, cujo objetivo principal foi implementar técnicas para deteccao
de objetos e rostos, focando principalmente no método de cascata Haar, dispostos na
biblioteca do OpenCv.

O experimento focou principalmente na detec¢do de objetos e rostos primeiramente
através de arquivos de imagens previamente ja salvos e posteriormente através de imagens
da webcam. Desta forma, este documento visa servir como referéncia técnica para a equipe
sobre a programacgao de manipulacdo de midias e cameras.

2. Fundamentos Basicos

A detecgao de objetos por meio de cascatas Haar baseia-se no uso de caracteristicas
visuais simples chamadas Haar-like features, que representam contrastes entre regioes claras
e escuras da imagem. Essas caracteristicas sao extraidas rapidamente gragas ao uso da
imagem integral, uma técnica que permite calcular somas de pixels em regides retangulares
com poucas operagoes, tornando o método adequado para aplicacdes em tempo real.

Durante o processo de treinamento, utiliza-se o algoritmo AdaBoost para selecionar as
caracteristicas mais relevantes entre milhares de possibilidades e combinar diversos
classificadores fracos em classificadores fortes. Esses classificadores sdo entdo organizados
em uma estrutura em cascata, onde cada estagio avalia se uma regido da imagem pode conter
o objeto de interesse. A cascata permite descartar rapidamente areas improvaveis, reduzindo
o custo computacional e aumentando a eficiéncia do sistema. Bibliotecas como o OpenCV
implementam essa técnica de forma otimizada, oferecendo modelos pré-treinados e
ferramentas para aplicar a deteccao de forma simples, normalmente por meio do
carregamento de um classificador em formato XML e da utilizacdo da func¢ao
detectMultiScale.

Apesar de métodos mais modernos baseados em redes neurais terem se popularizado,
a cascata Haar permanece uma solugdo pratica, leve e eficaz para tarefas de detecgdo
classicas, especialmente em sistemas embarcados ou aplicagdes com restri¢des de
processamento.

3. Materiais e métodos

3.1 Materiais:

3.1.1. Ubuntu (Linux OS)

O que ¢: Uma distribuicao Linux de codigo aberto.

Finalidade: Fornece o sistema operacional e o ambiente de desenvolvimento onde todas as
ferramentas serdo instaladas e executadas.

3.1.2. Terminal (Linux Shell)
O que ¢é: Interface de linha de comando (CLI).

Finalidade: Utilizado para executar comandos do sistema, gerenciar ambientes, instalar
softwares e rodar programas.

3.1.3. Conda / Miniconda3

O que é: Miniconda ¢ um gerenciador de pacotes e ambientes leve para Python.

Finalidade:

Gerenciar versoes do Python e suas dependéncias.
Criar ambientes isolados (como o PV25) para evitar conflitos entre projetos.

3.1.4. OpenCV
O que ¢é: Biblioteca de Visao Computacional de Codigo Aberto.

Finalidade: Principal biblioteca usada para tarefas de visdo computacional e processamento

de imagens/videos (detecc@o de objetos, transformagdes, extragcdo de caracteristicas etc.).

Variantes:

OpenCV (compilado do cédigo-fonte): Instalagdo completa com suporte a C++ e
Python.

OpenCV-Contrib: Modulos extras desenvolvidos pela comunidade (ex.:
reconhecimento facial, SIFT, SURF).

opencv-python (pip): Pacote pré-compilado do OpenCV para Python.
opencv-contrib-python (pip): Adiciona os mddulos extras a instalagdo em Python.

3.1.5. Ferramentas de Compilacio e Dependéncias

Essenciais para compilar e executar o OpenCV a partir do codigo-fonte:

build-essential: Compilador e ferramentas basicas de compilagao.
cmake: Configura e gera os arquivos de build do OpenCV.

git: Usado para clonar os repositorios do OpenCV.

pkg-config: Auxilia no gerenciamento de caminhos de bibliotecas e dependéncias.
libgtk-3-dev: Suporte de interface grafica para exibi¢do de imagens.
libavcodec-dev, libavformat-dev, libswscale-dev: Codecs de video/audio.
libjpeg-dev, libpng-dev, libtiff-dev: Suporte a formatos de imagem.
libxvidcore-dev, libx264-dev: Bibliotecas de codificagdo de video.
gfortran, libatlas-base-dev: Aceleracdo matematica.

python3-dev, python3-numpy: Cabegalhos Python + NumPy.

libtbb-dev: Suporte a multithreading.

libopenexr-dev: Suporte para imagens HDR.

libv4l-dev, libdc1394-dev: Suporte a captura de video.

libgstreamer-dev: Suporte a streaming de video.

3.1.6. pkg-config

O que ¢: Ferramenta auxiliar para configurar flags de compilacao e linkagem de bibliotecas.

Finalidade: Verifica se o OpenCV estd instalado e acessivel (pkg-config --modversion
opencv4).

3.1.7. Python e C++

O que sao: Linguagens de programacao usadas para rodar os scripts com OpenCV.

Finalidade: Fornece o ambiente de programagdao para desenvolver tarefas de visdo
computacional.

3.1.8. VLC Media Player

O que ¢: Reprodutor multimidia gratuito e de cddigo aberto.

Finalidade: Permite visualizar videos e imagens fora do OpenCV, 1til para testes e validagao
de resultados do processamento de video.

3.2 Procedimento experimental
Ao inicio de toda pratica, estudamos a teoria por tras dos experimentos para a fomentagao,
desenvolvimento e aplicacao das ideias experimentais, com isso, exminamos o repositorio

disposto em: https://docs.opencv.org/4.x/db/d28/tutorial cascade classifier.html, visando
explorar as possibilidades e aplicar a teoria da matéria.

Primeira Parte
Apo6s o estudo, seguimos o roteiro a fim de elaborar um c6digo no qual o programa fazia a
leitura de imagens dos membros da equipe e aplicava o filtro Haar cascade para obter a
deteccao dos respectivos rostos. Para isso, utilizamos modelos pré treinados para a execugao
do programa, que estdo dispostos a seguir:
https://github.com/opencv/opencv/tree/master/data/haarcascades. Foram integrados ao codigo
os modelos haarcascade eye tree eyeglasses.xml e haarcascade frontalface alt.xml, ambos
em formato xml. Os resultados para esta etapa estdo dispostos na proxima segao.

Segunda Parte
Para a segunda parte o roteiro pedia capturas de imagens da webcam para a deteccao dos
rostos utilizando o Haar cascade. Com isso, modificamos o codigo utilizado anteriormente
para implementagdo da webcam e aplicacdo do filtro em tempo real e a fung¢do de capturar a
imagem ao pressionar uma tecla.

4. Resultados e analises
Para a primeira parte, temos abaixo os resultados obtidos ao rodar o codigo desenvolvido
para a leitura e aplicagdo do filtro Haar cascade em uma imagem fixa:

https://docs.opencv.org/4.x/db/d28/tutorial_cascade_classifier.html
https://github.com/opencv/opencv/tree/master/data/haarcascades

J& para a segunda parte, executamos o programa a fim de capturar uma imagem em tempo

real através da webcam e aplicar o filtro instantaneamente. Abaixo, temos o resultado para
esta parte:

	3.1.2. Terminal (Linux Shell)
	3.1.3. Conda / Miniconda3
	3.1.4. OpenCV
	3.1.5. Ferramentas de Compilação e Dependências
	3.1.6. pkg-config
	3.1.7. Python e C++
	3.1.8. VLC Media Player

